चलती औसत - एमए एक मुव्हिंग औसत क्या है - एमए तकनीकी विश्लेषण में एक व्यापक रूप से इस्तेमाल किया सूचक है जो यादृच्छिक मूल्य में उतार-चढ़ाव से शोर को छानने के द्वारा मूल्य को कम करने में मदद करता है। एक चल औसत (एमए) एक प्रवृत्ति के बाद या पीछे सूचक है क्योंकि यह पिछले कीमतों पर आधारित है। दो बुनियादी और आम तौर पर इस्तेमाल किए जाने वाले एमए सरल चल औसत (एसएमए) हैं, जो एक परिभाषित संख्या की अवधि के दौरान एक सुरक्षा का सरल औसत और घातीय चलती औसत (एएमए) है, जो हाल के मूल्यों के लिए बड़ा वजन देता है। एमए के सबसे सामान्य अनुप्रयोग प्रवृत्ति दिशा की पहचान करने और समर्थन और प्रतिरोध स्तर निर्धारित करने के लिए हैं। जबकि एमए अपने दम पर पर्याप्त उपयोगी होते हैं, वे दूसरे संकेतकों के आधार भी बनाते हैं जैसे मूविंग औसत कनवर्जेन्स डिवर्जेंस (एमएसीडी)। खिलाड़ी लोड हो रहा है नीचे की ओर बढ़ते औसत - एमए एक एसएमए उदाहरण के रूप में, निम्न समापन कीमतों के साथ 15 दिनों के दौरान एक सुरक्षा पर विचार करें: सप्ताह 1 (5 दिन) 20, 22, 24, 25, 23 सप्ताह 2 (5 दिन) 26, 28, 26, 29, 27 सप्ताह 3 (5 दिन) 28, 30, 27, 29, 28 एक 10-दिन एमए पहले डेटा बिंदु के रूप में पहले 10 दिनों के लिए समापन कीमतों का औसत होगा। अगले डेटा बिंदु जल्द से जल्द कीमत को छोड़ देगा, 11 दिन की कीमत बढ़ाएं और औसत ले लें, और नीचे दिखाए गए अनुसार। जैसा कि पहले उल्लेख किया गया है, एमए की वर्तमान कीमत कार्रवाई की वजह से वे पिछले कीमतों पर आधारित हैं, एमए के लिए समय अवधि, अधिक से अधिक अंतराल इस प्रकार 200-दिवसीय एमए में 20-दिवसीय एमए की तुलना में काफी अधिक अंतर होगा क्योंकि इसमें पिछले 200 दिनों के लिए मूल्य शामिल हैं। एमए का उपयोग करने की लंबाई व्यापारिक उद्देश्यों पर निर्भर करती है, अल्प अवधि के व्यापार के लिए इस्तेमाल होने वाले कम एमए और लंबी अवधि के निवेशकों के लिए अधिक उपयुक्त एमए हैं। 200-दिवसीय एमए व्यापक रूप से निवेशकों और व्यापारियों द्वारा पीछा किया जाता है, इसके साथ-साथ इस चलती औसत से नीचे के ब्रेक और महत्वपूर्ण व्यापार संकेतों के रूप में माना जाता है। एमए भी अपने दम पर महत्वपूर्ण व्यापारिक संकेत देते हैं, या जब दो औसत पार हो जाते हैं एक बढ़ते हुए एमए इंगित करता है कि सुरक्षा एक अपट्रेंड में है। जबकि गिरावट एमए इंगित करता है कि यह एक डाउनट्रेंड में है। इसी तरह, ऊपर की गति को एक तेजी के क्रॉसओवर से पुष्ट किया जाता है। जो तब होता है जब एक अल्पावधि एमए एक लंबी अवधि के एमए ऊपर पार डाउनवर्ड गति को एक मंदी की क्रॉसओवर से पुष्टि की जाती है, जो तब होता है जब एक अल्पावधि एमए लंबी अवधि के एमए। औसत औसत से नीचे पार करता है यह उदाहरण आपको सिखाता है कि Excel में समय श्रृंखला की चलती औसत की गणना कैसे करें। रुझानों को आसानी से पहचानने के लिए चलती औसत का उपयोग अनियमितताओं (चोटियों और घाटियों) को सुलझाने के लिए किया जाता है 1. सबसे पहले, हमारी समय श्रृंखला पर एक नज़र डालें। 2. डेटा टैब पर, डेटा विश्लेषण क्लिक करें। नोट: डेटा विश्लेषण बटन को ढूंढने में कठिनाई नहीं है, विश्लेषण टूलपैक ऐड-इन लोड करने के लिए यहां क्लिक करें। 3. मूविंग औसत चुनें और ठीक क्लिक करें। 4. इनपुट रेंज बॉक्स पर क्लिक करें और सीमा B2: M2 चुनें। 5. अंतराल बॉक्स में क्लिक करें और टाइप करें 6. 6. आउटपुट रेंज बॉक्स में क्लिक करें और सेल B3 चुनें। 8. इन मूल्यों का एक ग्राफ प्लॉट करें। स्पष्टीकरण: क्योंकि हम अंतराल को 6 निर्धारित करते हैं, चलती औसत पिछले 5 डेटा बिंदुओं की औसत और वर्तमान डेटा बिंदु है। नतीजतन, चोटियों और घाटियों को बाहर smoothed हैं। ग्राफ़ में बढ़ती प्रवृत्ति को दर्शाता है Excel पहले 5 डेटा बिंदुओं के लिए चलती औसत की गणना नहीं कर सकता क्योंकि इससे पहले के डेटा बिंदु पर्याप्त नहीं हैं 9. अंतराल 2 और अंतराल के लिए चरण 2 से 8 दोहराएं। निष्कर्ष: अंतराल जितना बड़ा होगा, उतनी ही अधिक चोटियों और घाटियों को सुखाया जाएगा। अंतराल जितना छोटा होता है, चलती औसत करीब वास्तविक डेटा बिंदुओं के लिए होते हैं। बढ़ते औसत: वे क्या हैं सबसे लोकप्रिय तकनीकी संकेतकों में से, चलती औसत का इस्तेमाल मौजूदा रुझान की दिशा को मापने के लिए किया जाता है प्रत्येक प्रकार की चलती औसत (आमतौर पर इस ट्यूटोरियल में एमए के रूप में लिखा गया है) एक गणितीय परिणाम है, जो पिछले डेटा बिंदुओं की संख्या के आधार पर गणना की जाती है। एक बार निर्धारित होने पर, परिणामस्वरूप औसत एक चार्ट पर प्लॉट किया जाता है ताकि व्यापारियों को हर वित्तीय बाजारों में निहित दिन-प्रतिदिन की कीमत में उतार-चढ़ाव पर ध्यान केंद्रित करने की बजाय चिकनी डेटा देखने की इजाजत मिल सके। एक चलती औसत का सरलतम रूप, जिसे सरल चलती औसत (एसएमए) के रूप में जाना जाता है, की गणना मूल्यों के निर्धारित सेट के अंकगणित माध्य के आधार पर की जाती है। उदाहरण के लिए, मूल 10-दिन की चलती औसत की गणना करने के लिए आप पिछले 10 दिनों से समापन कीमतें बढ़ा सकते हैं और फिर 10 के परिणाम विभाजित करेंगे। 1 चित्रा में, पिछले 10 दिनों (110) के लिए कीमतों का योग 10 दिनों की औसत पहुंचने के लिए दिनों की संख्या (10) से विभाजित। यदि कोई व्यापारी बजाय 50-दिवसीय औसत देखना चाहता है, तो उसी प्रकार की गणना की जाएगी, लेकिन इसमें पिछले 50 दिनों में कीमत शामिल होगी। पिछले 10 दिनों के सापेक्ष परिसंपत्ति की कीमत कैसे तय की गई है, इसके बारे में व्यापारियों को यह बताने के लिए पिछले 10 डेटा पॉइंट्स के बारे में नीचे दिए गए औसत औसत (11) का अनुमान लगाया गया है। शायद आप सोच रहे हैं कि क्यों तकनीकी व्यापारियों ने इस उपकरण को एक औसत चलती औसत कहते हैं और न सिर्फ एक नियमित मतलब। इसका जवाब यह है कि नए मानों के उपलब्ध होने के नाते, सबसे पुराने डेटा अंक सेट से हटा दिए जाने चाहिए और उन्हें बदलने के लिए नए डेटा बिंदु आने चाहिए। इस प्रकार, डेटा सेट लगातार नए डेटा के लिए खाते में बढ़ रहा है क्योंकि यह उपलब्ध हो जाता है। गणना की यह विधि यह सुनिश्चित करती है कि केवल वर्तमान जानकारी का हिसाब किया जा रहा है। चित्रा 2 में, जब एक बार 5 का नया मान सेट में जोड़ा जाता है, तो लाल बॉक्स (पिछले 10 डेटा पॉइंट्स का प्रतिनिधित्व करता है) सही पर चलता है और 15 के अंतिम मान को गणना से हटा दिया गया है। चूंकि 5 का अपेक्षाकृत छोटा मान 15 के उच्च मूल्य की जगह लेता है, आप इस स्थिति में 11 से 10 के बीच डेटा सेट कम की औसत देखने की उम्मीद करेंगे। क्या चलते हुए औसत की तरह दिखते हैं एक बार जब मूल्य एमए गणना की गई है, उन्हें एक चार्ट पर प्लॉट किया जाता है और फिर चलती औसत रेखा बनाने के लिए जुड़ा हुआ है इन कर्लिंग लाइनें तकनीकी व्यापारियों के चार्ट पर आम हैं, लेकिन इसका इस्तेमाल कैसे किया जा सकता है (अधिक बाद में इस पर)। जैसा कि आप चित्रा 3 में देख सकते हैं, गणना में उपयोग की जाने वाली समयावधियों की संख्या को समायोजित करके एक चार्ट से अधिक चलती औसत जोड़ना संभव है। ये घुमावदार रेखाएं पहले पर ध्यान भंग या भ्रामक लग सकती हैं, लेकिन आप समय के साथ उनसे आदी हो जाएंगे। लाल रेखा बस पिछले 50 दिनों में औसत मूल्य है, जबकि नीली रेखा पिछले 100 दिनों से औसत कीमत है। अब जब आप समझते हैं कि चलती औसत क्या है और यह कैसा दिखता है, तो एक अलग प्रकार की चलती औसत का परिचय दें और जांचें कि यह पहले उल्लेखित सरल चलती औसत से कैसे अलग है। सरल चलती औसत व्यापारियों में बेहद लोकप्रिय है, लेकिन सभी तकनीकी संकेतकों की तरह, इसके आलोचक हैं कई व्यक्तियों का तर्क है कि एसएमए की उपयोगिता सीमित है क्योंकि डेटा श्रृंखला में प्रत्येक बिंदु को वही भारित किया जाता है, चाहे वह अनुक्रम में क्यों न हो। आलोचकों का तर्क है कि सबसे हालिया डेटा पुराने आंकड़ों के मुकाबले अधिक महत्वपूर्ण है और अंतिम परिणाम पर अधिक प्रभाव होना चाहिए। इस आलोचना के जवाब में, व्यापारियों ने हालिया आंकड़ों को और अधिक वजन देना शुरू कर दिया, जिसके बाद से विभिन्न प्रकार की नई औसत का आविष्कार हुआ, जो सबसे अधिक प्रचलित गति औसत (एएमए) है। (आगे पढ़ने के लिए, वेटेड मूविंग एवरेज की मूल बातें देखें और एसएमए और ईएमए के बीच का अंतर देखें) घातीय मूविंग एवल एक्सपेंलेनेबल मूविंग एवरल एक प्रकार का चलती औसत है जो हालिया कीमतों को और अधिक संवेदनशील बनाने के प्रयास में अधिक वजन देता है नई जानकारी के लिए ईएमए की गणना के लिए कुछ जटिल समीकरण सीखना कई व्यापारियों के लिए अनावश्यक हो सकता है, क्योंकि लगभग सभी चार्टिंग पैकेज आपके लिए गणना करते हैं हालांकि, आप गणित के लिए बाहर गीके, यहाँ EMA समीकरण है: जब ईएमए के पहले बिंदु की गणना करने के लिए सूत्र का उपयोग करते हुए, आप देख सकते हैं कि पिछले ईएमए के रूप में उपयोग करने के लिए कोई मूल्य उपलब्ध नहीं है। इस छोटी सी समस्या को सरल चलती औसत के साथ गणना शुरू करने और वहां से ऊपर के सूत्र के साथ जारी करके हल किया जा सकता है। हमने आपको एक नमूना स्प्रैडशीट प्रदान किया है जिसमें वास्तविक जीवन के उदाहरण शामिल हैं, जिनमें एक सरल चलती औसत और एक घातीय चलती औसत दोनों की गणना की जाती है। एएमए और एसएमए के बीच का अंतर अब जब आपको एसएमए और एएमए की गणना की जाने वाली समझ है, तो यह देखें कि यह औसत कैसे अलग है। ईएमए की गणना को देखते हुए, आप देखेंगे कि हाल के डेटा बिंदुओं पर अधिक जोर दिया गया है, जिससे यह एक औसत भारित औसत बना सकता है। चित्रा 5 में, प्रत्येक औसत में उपयोग की जाने वाली समयावधि की संख्या एक समान (15) है, लेकिन ईएमएम बदलते कीमतों पर अधिक तेज़ी से जवाब देती है। ध्यान दें कि कीमत बढ़ने पर ईएमए का क्या उच्च मूल्य है, और जब कीमत में गिरावट आ रही है तो एसएमए की तुलना में तेजी से गिरता है। इस जवाबदेही का मुख्य कारण यह है कि कई व्यापारिक एसएमए पर एएमए का उपयोग करना पसंद करते हैं। अलग दिन क्या होता है बढ़ते औसत एक पूरी तरह से अनुकूलन योग्य सूचक है, जिसका अर्थ है कि औसत बनाने के दौरान उपयोगकर्ता जो भी समय सीमा चाहते हैं, उन्हें स्वतंत्र रूप से चुन सकते हैं चलने की औसत में सबसे सामान्य समय अवधि 15, 20, 30, 50, 100 और 200 दिन होती है। औसत बनाने के लिए कम समय अवधि, अधिक संवेदनशील यह मूल्य परिवर्तनों के लिए होगा। अब समय अवधि, कम संवेदनशील, या अधिक चिकनाई, औसत हो जाएगा आपकी चलती औसत सेट करते समय उपयोग करने के लिए कोई सही समय सीमा नहीं है यह पता लगाने का सबसे अच्छा तरीका है कि आपके लिए सबसे अच्छा कौन काम करता है, वह कई अलग-अलग समय अवधि के साथ प्रयोग करना है जब तक कि आप अपनी रणनीति को फिट नहीं कर पाते। मूविंग एवरेज: 12-महीना रोलिंग औसत की गणना करने के लिए इन्हें कैसे उपयोग करें? एक नियमित 12-महीने औसत मासिक आंकड़ों के वर्ष को एक औसत औसत संख्या में कम करता है 12 महीने की रोलिंग औसत या चलती औसत, केवल लगातार 12 महीने की अवधि में 12-महीने की औसत की श्रृंखला है। यह सांख्यिकीय उपकरण आपको मासिक डेटा की एक श्रृंखला की संपूर्ण दिशा में गेज में मदद कर सकता है। क्योंकि यह महीने-से-महीने के परिवर्तन के प्रभाव को कम करता है। आप लगभग किसी भी प्रकार की मासिक संख्या, जैसे कि राजस्व, लाभ, शेयर की कीमत या खाता शेष का विश्लेषण करने के लिए 12 महीने की रोलिंग औसत का उपयोग कर सकते हैं। मासिक आंकड़ों को इकट्ठा करें, जिसके लिए आप 12 महीने के रोलिंग औसत की गणना करना चाहते हैं। आपको कम से कम लगातार 13 महीने की जानकारी की आवश्यकता है, लेकिन जितना अधिक आपके पास है, उतना उपयोगी होगा कि रोलिंग औसत हो। उदाहरण के लिए, मान लें कि आप बिक्री के 14 महीनों के लिए 12 महीने के रोलिंग औसत की गणना करना चाहते हैं: उदाहरण में, जनवरी से दिसंबर 2017 तक मासिक बिक्री आंकड़े जोड़ें: 50,000 55,000 60,000 65,000 70,000 75,000 72,000 70,000 68,000 71,000 76,000 85,000 817,000 सबसे पुराना 12 महीने की अवधि के लिए औसत मासिक आंकड़ा की गणना के लिए 12 से अपना परिणाम विभाजित करें। यह पहली रोलिंग औसत का प्रतिनिधित्व करता है। इस उदाहरण में, पहली रोलिंग औसत के लिए 12,717,000 12 महीने 68,083 तक 817,000 को विभाजित करें अगले 12 महीने की अवधि के लिए मासिक आंकड़े जोड़ें। इसमें सबसे पहले महीने को छोड़कर पिछले 12 महीने की अवधि भी शामिल है। इसमें पिछले 12 महीने की अवधि के तुरंत बाद नवीनतम महीने भी शामिल है। उदाहरण के लिए, अगली लगातार 12 महीने की अवधि जनवरी 2018 के माध्यम से फरवरी 2017 है। 840,000 पाने के लिए मासिक बिक्री संख्या जोड़ें। दूसरे रोलिंग औसत की गणना के लिए अपने परिणाम 12 से विभाजित करें। उदाहरण में, 840,000 से 12: 840,000 तक 12 हजार 70,000 सेकंड रोलिंग औसत को विभाजित करें, अगले 12-महीनों की अवधि के लिए मासिक डेटा जोड़ें, और तीसरे रोलिंग औसत की गणना के लिए 12 के द्वारा अपना परिणाम विभाजित करें। शेष रोलिंग औसत की गणना करने के लिए प्रत्येक 12 माह की अवधि के लिए समान गणना को दोहराएं। उदाहरण के लिए, मार्च 2017 से फरवरी 2018 तक मासिक बिक्री 852,000 पाने के लिए जोड़ें। 71,000 के तीसरे स्थान पर जाने के लिए 852,000 तक 12 को विभाजित करें। 12 महीने की रोलिंग औसत 68,083, 70,000 और 71,000 है, जो दी गई अवधि में बढ़ती बिक्री प्रवृत्ति दर्शाती है। अपने डेटा की प्रवृत्ति को देखने के लिए अपने मासिक आंकड़े और ग्राफ़ पर 12 महीने के रोलिंग औसत का प्लॉट करें।
Comments
Post a Comment